教会网-生活常识知识分享
  • 微信客服微信客服
  • 微信公众号微信公众号
您现在的位置是:首页 > 考研

高等数学计算方法有哪些(高等数学有哪些公式)

教会网 2022-10-16

高数公式有哪些?

一、sinh-1 x dx = x sinh-1 x-+ C。

高等数学计算方法有哪些(高等数学有哪些公式)

二、cosh-1 x dx = x cosh-1 x-+ C。

三、tanh-1 x dx = x tanh-1 x+ ln | 1-x2|+ C。

四、coth-1 x dx = x coth-1 x- ln | 1-x2|+ C。

五、sech-1 x dx = x sech-1 x- sin-1 x + C。

六、csch-1 x dx = x csch-1 x+ sinh-1 x + C。

七、sin 3θ=3sinθ-4sin3θ。

八、cos3θ=4cos3θ-3cosθ。

九、→sin3θ= (3sinθ-sin3θ)。

十、→cos3θ= (3cosθ+cos3θ)。

十一、sin (α±β)=sin α cos β ± cos α sin β。

十二、cos (α±β)=cos α cos β sin α sin β。

十三、2 sin α cos β = sin (α+β) + sin (α-β)。

十四、2 cos α sin β = sin (α+β) - sin (α-β)。

十五、2 cos α cos β = cos (α-β) + cos (α+β)。

1、通用格式,用数学符号表示,各个量之间的一定关系(如定律或定理)的式子,能普遍应用于同类事物的方式方法。

2、公式,在数学、物理学、化学、生物学等自然科学中用数学符号表示几个量之间关系的式子。具有普遍性,适合于同类关系的所有问题。在数理逻辑中,公式是表达命题的形式语法对象,除了这个命题可能依赖于这个公式的自由变量的值之外。

公式精确定义依赖于涉及到的特定的形式逻辑,但有如下一个非常典型的定义(特定于一阶逻辑): 公式是相对于特定语言而定义的;就是说,一组常量符号、函数符号和关系符号,这里的每个函数和关系符号都带有一个元数(arity)来指示它所接受的参数的数目。

错误公式特征:

1、自称是科学的,但含糊不清,缺乏具体的度量衡。

2、无法使用操作定义(例如,外人也可以检验的通用变量、属于、或对象)。

3、无法满足简约原则,即当众多变量出现时,无法从最简约的方式求得答案。

EXCEL公式是EXCEL工作表中进行数值计算的等式。

excel中公式和函数的作用:

1、零存整取收益函数PV。

2、内部平均值函数TRIMMEAN。

3、日期年份函数YEAR。

4、字符提取函数MID。

高等数学极限运算法则

1、本题是无穷大乘以无穷小型不定式;

.

2、解答方法用到三个步骤:

A、分子有理化;

B、化无穷大计算为无穷小计算;

C、无穷小直接用0代入。

.

3、具体解答如下,如有疑问,欢迎追问,有问必答。

.

4、极限计算方法五花八门,下面提供的另外十张图片,

   提供给楼主极限计算方法,跟具体示例。这些方法

   应付一般的花拳绣腿的考研绰绰有余。

.

5、所有的图片,均可点击放大,放大后图片更加清晰。

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

高等数学公式都有哪些?

高等数学公式是考研以及理工类研究的基础,也是重中之重,掌握这些公式能够帮助考生快速学习高等数学相关知识。

极限:

设函数f(x)在点x。的某一去心邻域内有定义,如果存在常数A,对于任意给定的正数ε(无论它多么小),总存在正数δ ,使得当x满足不等式0|x-x。|δ 时,对应的函数值f(x)都满足不等式:|f(x)-A|ε。

导数:

1、 C'=0(C为常数函数)

2、 (x^n)'= nx^(n-1) (n∈Q);

3、 (sinx)' = cosx

4、(cosx)' = - sinx

5、 (e^x)' = e^x

6、 (a^x)' = (a^x) * Ina (ln为自然对数)

曲率:

K = lim(Δs→0) |Δα/Δs|,当曲线y=f(x)存在二阶导数时,K=|y''|/(1+ y' ^2)^(3/2):曲率半径R=1/K。

不定积分:

1、∫0dx=c;

2、∫x^udx=(x^u+1)/(u+1)+c;

3、∫1/xdx=ln|x|+c

4、∫a^xdx=(a^x)/lna+c

5、∫e^xdx=e^x+c

6、∫sinxdx=-cosx+c

7、∫cosxdx=sinx+c

扩展资料:

高等数学定义:

广义地说,初等数学之外的数学都是高等数学,也有将中学较深入的代数、几何以及简单的集合论初步、逻辑初步称为中等数学的,将其作为中小学阶段的初等数学与大学阶段的高等数学的过渡。

通常认为,高等数学是由微积分学,较深入的代数学、几何学以及它们之间的交叉内容所形成的一门基础学科。

课程特点:

在中国理工科各类专业的学生(数学专业除外,数学专业学数学分析),学的数学较难,课本常称“高等数学”;文史科各类专业的学生,学的数学稍微浅一些,课本常称“微积分”。

参考资料来源:百度百科-高等数学

参考资料来源:百度百科-数学公式

高等数学中几种求极限的方法

极限是微积分中的一条主线,是学好微积分的重要前提条件。而此问题一般来说比较困难,要根据具体情况进行具体分析和处理,方法很多比较凌乱。以下是我搜索整理的高等数学中几种求极限的方法,供参考借鉴!

一、由定义求极限

极限的本质――既是无限的过程,又有确定的结果。一方面可从函数的变化过程的趋势抽象得出结论,另一方面又可从数学本身的逻辑体系下验证其结果。

然而并不是每一道求极限的题我们都能通过直观观察总结出极限值,因此由定义法求极限就有一定的局限性,不适合比较复杂的题。

二、利用函数的连续性求极限

此方法简单易行但不适合于f(x)在其定义区间内是不连续的函数,及f(x)在x0处无定义的情况。

三、利用极限的四则运算法则和简单技巧求极限

极限四则运算法则的条件是充分而非必要的,因此,利用极限四则运算法则求函数极限时,必须对所给的函数逐一进行验证它是否满足极限四则运算法则条件。满足条件者,方能利用极限四则运算法则进行求之,不满足条件者,不能直接利用极限四则运算法则求之。但是,并非不满足极限四则运算法则条件的函数就没有极限,而是需将函数进行恒等变形,使其符合条件后,再利用极限四则运算法则求之。而对函数进行恒等变形时,通常运用一些简单技巧如拆项,分子分母同乘某一因子,变量替换,分子分母有理化等等。

四、利用两边夹定理求极限

定理 如果X≤Z≤Y,而limX=limY=A,则limZ=A

两边夹定理应用的关键:适当选取两边的函数(或数列),并且使其极限为同一值。

注意:在运用两边夹定理求极限时要保证所求函数(或数列)通过放缩后所得的.两边的函数(或数列)的极限是同一值,否则不能用此方法求极限。

五、利用单调有界原理求极限

单调有界准则即单调有界数列必定存在极限。使用单调有界准则时需证明两个问题:一是数列的单调性,二是数列的有界性;求极限时,在等式的两边同时取极限,通过解方程求出合理的极限值。

利用单调有界原理求极限有两个难点:一是证明数列的单调性,二是证明数列的有界性,在证明数列的单调性和数列的有界性时,我们通常都采用数学归纳法。

六、利用等价无穷小代换求极限

在实际计算过程中利用等价无穷小代换法或与其它方法相结合,不失为一种行之有效的方法,但并非计算过程中所有的无穷小量都能用其等价的无穷小量来进行计算。用等价无穷小代换时,只能代换分子、分母中的乘积因子,而不能代换其中的加减法因子。于是用等价无穷小代换的问题便集中到对于分子、分母中的加减法因子如何进行x的等价无穷小代换这一点上,在利用等价无穷小代换的方法求极限时必须把分子(或分母)看作一个整体,用整个分子(或分母)的等价无穷小去代换。

七、利用泰勒展式求极限

运用等价无穷小代换方法求某些极限,往往可以减少计算量,使问题得以简化。但一般说来,这种方法仅限于求两个无穷小量是乘或除的极限,而对两个无穷小量非乘或非除的极限,对于一些未能确定函数极限形态的关系式,不能用洛必达法则及等价无穷小代换方法,须用泰勒公式去求极限。

八、利用级数收敛的必要条件求极限

求极限的方法有很多种,在解题时,这些方法并不是孤立的,常常一个问题需要用到几种方法。根据题目给出的条件,选择适当的方法结合使用,能使运算更简捷,起到事半功倍的效果。同时又能加强对微积分知识整体上的深层次认识,对学好微积分是大有裨益的。

分数求极限的方法

1、分式中,分子分母同除以最高次,化无穷大为无穷小计算,无穷小直接以0代入;

2、无穷大根式减去无穷大根式时,分子有理化,然后运用(1)中的方法;

3、运用两个特别极限;

4、运用洛必达法则,但是洛必达法则的运用条件是化成无穷大比无穷大,或无穷小比无穷小,分子分母还必须是连续可导函数。它不是所向无敌,不可以代替其他所有方法,一楼言过其实。

5、用Mclaurin(麦克劳琳)级数展开,而国内普遍误译为Taylor(泰勒)展开。

6、等阶无穷小代换,这种方法在国内甚嚣尘上,国外比较冷静。因为一要死背,不是值得推广的教学法;二是经常会出错,要特别小心。

7、夹挤法。这不是普遍方法,因为不可能放大、缩小后的结果都一样。

8、特殊情况下,化为积分计算。

9、其他极为特殊而不能普遍使用的方法。

文章版权声明:除非注明,否则均为教会网原创文章,转载或复制请以超链接形式并注明出处。